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A B S T R A C T

This study introduces a methodology tailored to analog hardware architecture for implementing an artificial
neural network. The fundamental components of the architecture include current-mode circuits, representing
the class, and a voltage-mode comparator. Specifically, the current mode circuits comprise the Mahalanobis
distance circuit, Sigmoid function circuit, analog multiplier, and current mirrors. Regarding the voltage
comparator, which receives the final decision, a folded-cascode operational amplifier is employed. The oper-
ational principles of the architecture are extensively explained and applied in a power-efficient configuration
(operating under 976nW) with low power supply rails (0.6 V). The proposed implementation is tested on
real-world biomedical classification tasks, achieving classification accuracy exceeding 91.6%. The designs are
implemented using a 90 nm CMOS process and developed using the Cadence IC Suite for both schematic and
layout design. Monte-Carlo analysis, encompassing both process and mismatch, as well as corner analysis,
are provided to confirm the robust characteristics of the proposed classifier. Through comparative analysis of
post-layout simulation results with an equivalent software-based classifier and related literature, the proper
operation of the proposed architecture is confirmed.
1. Introduction

Driven by the increasing integration of Machine Learning (ML) and
Artificial Intelligence (AI) in bioengineering [1–3], this study explores
the synergy between innovative hardware solutions and biomedical
applications. As ML and AI revolutionize research, diagnostics, and
treatment approaches in bioengineering [1], the need for sophisticated
hardware architectures becomes paramount [4,5]. These architectures,
ranging from high-performance computing systems [6,7] to specialized
hardware accelerators [8,9], complement the cognitive capabilities of
ML and AI, enabling the processing of extensive datasets and real-time
analyses inherent in bioengineering tasks. By seamlessly integrating
data acquisition, processing, and feedback mechanisms, these hardware
advancements expedite the execution of ML and AI algorithms and pave
the way for novel methodologies [10].

Analog computing emerges as a promising avenue to augment ML
methodologies in biomedicine, addressing the computational demands
of complex tasks with precision, energy efficiency, and low latency [11,
12]. Leveraging the capacity of analog computing to process continuous
signals in real-time, researchers can achieve faster and more energy-
efficient ML inference for applications such as real-time diagnostics and
wearable health monitoring [11,12]. The fusion of analog computing

∗ Corresponding author.
E-mail address: alimisisv@gmail.com (V. Alimisis).

with ML holds promise for unlocking novel insights, facilitating faster
decision-making, and enhancing the overall efficiency of data-driven
medical interventions.

In addition to analog computing [11,12], another major trend is soft
computing [13,14], which introduces a new methodology for enhanc-
ing computational efficiency and flexibility in solving various tasks.
Furthermore, through parallelization and real-time data management,
soft computing gains additional capabilities through analog computing.
Having already methodologies to handle uncertainty, fuzziness, and
non-linearity, it now adds new concepts to integrate them into real-
world classification tasks [13,14]. Thus, we can design new hybrid
architectures that combine the advantages of both, capable of being
widely used in dynamic environments. This leads to new possibilities
for developing novel machine learning methods.

Motivated by the efficiency requirements of biomedical smart sensor
systems [15,16], this study proposes an alternative, low-power, and
analog integrated architecture based on a artificial neural network
(ANN). Demonstrating considerable promise as a classifier suitable
for battery-dependent biomedical smart sensor classification systems,
the implemented design attains high accuracy. Implemented design
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demonstrates proper operation, validated using real-world biomedical
datasets. Post-layout simulations in a TSMC 90 nm CMOS process via
Cadence IC Suite validate the accuracy of the devised implementation.
A comprehensive comparative analysis with related analog classifiers
is incorporated to ensure thoroughness. Our approach deviates from
existing ones in the sense that it can handle a large number of features
without the need of Principal Component Analysis (PCA) [17], more
than 20, the related currents of the classifier can be adjusted as low as
necessary just to ensure proper circuit operation (high accuracy and low
noise), the weights of each feature can be tuned independently and pure
current-mode analog circuits are combined to implement the activation
functions (more than one).

In the literature there is a variety of analog hardware classifiers
including: a Manhattan distance network [18], a Fuzzy [19], a Gaussian
mixture model (GMM) [20], a Radial Basis Function (RBF) [21], a RBF-
Neural Network (NN) [22–24], a Artificial Neural Network (ANN) [25],
Bayes [26], Support Vector Machine (SVM) [27,28], a K-means [29],
a Support Vector Regression (SVR) [30], a Support Vector Domain
Description (SVDD) [31], a Self-Organized Map (SOM) [32], a Long
Short-Term Memory (LSTM) [33], a Multilayer Perceptron (MLP) [34],
a Threshold [35], a cascaded-connected Centroid [36], a Spiking Neural
Network (SNN) [37,38] and a Pattern-Matching (PM) classifier [39].

Compared to this work, related studies [19–21,26–28,32,35,36] lack
the ability to control weights for each separate feature; instead, they
can only adjust the overall probability for the entire class. Also, in
comparison with RBF-NN (Gaussian function as activation function)
[22–24], this work employs a variety of activation functions and hidden
layers. The ANN designed in [25] is a simple implementation which
is based on current mirrors and common source amplifiers, which
approximates the behavior of linear activation functions. Last but not
least, this work differs from [18] in terms of architecture, mathematical
model, training methods, and design procedure. We will further analyze
the novelty in Sections 4–6.

The remainder of this study is structured as follows: Section 2
delves into the essential background of the ANN. A literature review
based on both traditional approaches and next generations AI hardware
processors is provided in Section 3. Section 4 presents an analysis of
the proposed classifier’s architecture and transistor-level implementa-
tions. Section 5 describes the training and tuning capabilities of the
proposed ANN. Section 6 confirms the proper operation of the proposed
ANN by employing real-world biomedical datasets and compare with a
software-based equivalent. Section 7 provides a comparison study with
related analog classifiers, and Section 8 concludes with final remarks.

2. Artificial neural networks

Artificial Neural Networks (ANNs) have emerged as a fundamental
of modern artificial intelligence, drawing inspiration from the neu-
ral structures of the human brain to process and interpret complex
data [40]. ANNs consist of chains of interconnected nodes or neurons,
with each layer transforming incoming data through weighted connec-
tions and activation functions to produce output [41]. This architecture
allows ANNs to learn from data, making them highly adaptable for a
variety of tasks, including image and speech recognition, natural lan-
guage processing, and autonomous systems [42]. As both the numbers
and complexity of data increase, we have reached a point where the
use of ANNs is necessary to obtain significant results, something that
has become evident across various sectors.

The fundamental methodology of training an ANN involves a series
of steps designed to optimize the network’s performance on specific
tasks [43]. Initially, data is fed into the input layer, where it undergoes
a series of transformations through one or more hidden layers, each
equipped with numerous neurons. Each connection between neurons
is associated with a weight that is adjusted during the training pro-
cess. Training typically employs the backpropagation algorithm, which
calculates the gradient of the loss function – measuring the difference
 c

2 
between predicted and actual outputs – and updates the weights to
minimize this loss. This iterative process, guided by optimization tech-
niques such as gradient descent and its variations, allows the network
to gradually enhance its accuracy and predictive power.

ANNs have achieved remarkable results in a variety of applications
and fields, ranging from medical diagnostics to economic studies and
forecasts [42]. The ability to detect anomalies, tumors, and patholog-
ical conditions has improved the accuracy of many new techniques
that utilize ANNs. Consequently, it has led to the advancement of
medical imaging, for instance. In economics, from the other side,
they aid in predicting market trends and managing risks by analyzing
historical data and recognizing patterns that may not be immediately
apparent to human analysts. Despite their advantages, ANNs also face
significant challenges, including the need for large amounts of labeled
data, substantial computational resources, and the risk of overfitting,
where the network performs well on training data but poorly on unseen
data. Ongoing research focuses on addressing these challenges through
innovations in network architectures, regularization techniques, and
efficient training algorithms, aiming to make ANNs more resilient,
efficient, and widely applicable [44].

For the implementation of any algorithm, machine learning model,
or ANN using analog integrated circuits, there must first be a proper
mathematical modeling of the respective classifier [45]. A feedfor-
ward ANN can be mathematically represented based on the following
methodology: Let 𝐿 be the number of layers in the ANN, including
obviously the input and output layers. We assume there is an index 𝑙
for the various layers, where 𝑙 = 1 for the input layer and 𝑙 = 𝐿 for the
output layer. Let 𝑛𝑙 be the number of neurons in a layer 𝑙. As we will
nalyze below for our implementation, we will have 𝑛𝑙 = 𝑁𝑑 , which
elates to the number of features. To connect layer 𝑙 to the next layer
+ 1, the weight matrix 𝐖(𝑙) is used. Also, 𝑏(𝑙) is defined as the bias
ector for layer 𝑙. Similarly, the activation vector for layer 𝑙 is denoted
s 𝛼(𝑙).

Based on the above description, let there be an input vector 𝑥, then
he computations are carried out as follows for each layer [45]. For the
nput layer, we have 𝑙 = 1 and activation vector 𝛼(1) = 𝑥. Similarly, the
idden layers for 𝑙 = (2, 3, 𝐿 − 1) are given by:
(𝑙) = 𝐖(𝑙−1)𝛼(𝑙−1) + 𝑏(𝑙−1) (1)

(𝑙) = 𝑔(𝑧(𝑙)) (2)

here: 𝑧(𝑙) represents the weighted sum of inputs to each neuron
n layer, 𝑔() is the activation function applied element-wise to the
lements 𝑧(𝑙). Similarly, for the output layer 𝑙 = 𝐿, the corresponding
escription equations are:
(𝐿) = 𝐖(𝐿−1)𝛼(𝐿−1) + 𝑏(𝐿−1) (3)

= 𝛼(𝐿) = 𝑔(𝑧(𝐿)) (4)

here y is the prediction of the ANN. During the training process, by
inimizing the cost function 𝐽 (𝐖, 𝑏) through techniques like gradient
escent, the ANN learns the optimal values for the weights 𝑊 and pa-
ameters 𝑏. Thus, it achieves the desired classification accuracy without
verfitting.

. ANNs from traditional approach to next generations hardware

ANNs have gained significant attention in recent years, as they
re now not only implemented as pure software solutions but also
xist in software-hardware co-design architectures and fully hardware
mplementations [46,47]. This has been facilitated by their utilization
cross a plethora of applications, ranging from digit classification to
utonomous vehicles [42]. Through ANNs, we have been led to the

omplete automation of decision-making, even in complex tasks.
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Fig. 1. The high level architecture of the analog integrated ANN classification model implemented with 𝑁𝑑 MDCs, 𝑁𝑑 SFs, 𝑁𝑑

2
analog multipliers and 𝑁𝑑

2
CMs for each class and

a voltage comparator.
Starting from the software domain, there are several papers in
recent years that examine ANNs [42,48,49]. The application and com-
plexity of each implementation vary and are related to the domain
of interest. Based on a related survey, the majority of ANNs are em-
ployed in management, education and science [42]. Furthermore, in
software, we can implement various types of ANNs, including; feed-
forward Neural Networks (NNs), recurrent NNs, convolutional NNs,
Long Short-Term Memory Networks (LSTMs), Generative Adversarial
Networks (GANs) and Auto-encoder Neural Networks (AENN) [50–52].
Feedforwared NNs is the simplest type because the information flows
in one direction, from the input to the output. It consists of input,
hidden and output layers. Recurrent NNs exhibit temporal dynamics
behavior because their connections form a cycle. They typically use
sequential data. Convolutional NNs consist of fully connected, pool-
ing and convolutional layers. They apply convolutional operations to
identify patterns and as a result they are employed computer vision
tasks. LSTMs are an expansion of Recurrent NNs which are suitable
for learning from sequences of data. GANs are complex models, which
consists of two NNs, a discriminator and a generator. They are suitable
for data augmentation and image generation. AENNs combines two
types of networks an encoder and a decoder which first maps and
then reconstruct the data. They are typically used for dimensionality
reduction (e.g feature learning).

Regarding hardware implementations, there is a variety of imple-
mentations based on different approaches. Graphics Processing Units
(GPUs) are widely used for accelerating neural network training and
inference due to their highly parallel architecture [53–55]. They ex-
cel at performing matrix multiplications and other compute-intensive
operations commonly found in deep learning algorithms. Also, Field-
Programmable Gate Arrays (FPGAs) offer flexibility and reconfigura-
bility, making them suitable for implementing custom neural network
architectures and accelerating specific tasks [56–58]. They can be pro-
grammed to efficiently execute neural network operations in parallel,
providing low-latency and energy-efficient solutions. An interesting
solution but power-hungry in comparison with analog one, is digital
Application-Specific Integrated Circuits (ASICs) which are custom-
designed integrated circuits optimized for specific tasks, including
3 
neural network computation [59–61]. Digital ASICs can offer high
performance and energy efficiency by implementing dedicated hard-
ware modules for neural network operations. Moreover, memristors are
emerging non-volatile memory devices that can be used to implement
neural network synapses and weights [62–64]. They offer advantages
such as low power consumption, high density, and analog behavior,
making them suitable for neuromorphic computing and analog neural
network implementations. An alternative hardware approach consists
of neuromorphic chips, which mimic the structure and functionality of
biological neural networks, typically consisting of spiking neurons and
synaptic connections [65–67]. These chips can efficiently process tem-
poral data and are well-suited for tasks such as pattern recognition and
sensory processing. Last but not least, analog ICs leverage continuous
voltage signals to perform neural network computations, offering po-
tential advantages in terms of energy efficiency and scalability [68–70].
They can implement neural network models with high analog precision,
enabling efficient hardware implementations of certain algorithms.

4. Proposed artificial neural network’s architecture

In this section, we will present and analyze the proposed archi-
tecture along with its fundamental structural elements. Aimed at a
more design-oriented approach, we will elucidate the reasons behind
selecting specific power supply, structural components, and dimensions
to achieve the desired specifications. With the objective of attaining the
lowest possible power consumption coupled with high accuracy and
processing speed, we have introduced this particular architecture in
conjunction with the design specifications and fundamental structural
elements for implementing the classifier.

4.1. High-level architecture

The proposed architecture is based on a hardware-friendly approxi-
mation of the mathematical modeling of ANN. As depicted in Fig. 1, the
proposed architecture consists of 2 classes and 𝑁𝑑 features. This means
it can classify binary classification tasks with any desired number of
features. The activation function used is the Euclidean distance, which
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for correlation reasons with our previous work [18], we consider to be
approximated by the Manhattan distance. The Manhattan distance cir-
cuit (MDC) approximates this activation function. Through this specific
function, the ANN can learn the desired relationship between input data
and various outputs [45]. To achieve higher accuracy, the implemented
model also utilizes a second layer where the activation function is the
sigmoid function [45]. The sigmoid function is suitable for binary clas-
sification, yielding better results compared to other activation functions
when outputs need to have a probabilistic nature. Additionally, in this
implementation, the weight change multiplicative factor is used as a
parameter that regulates how the input of a neuron is combined with
the inputs of previous neurons.

The output of each sigmoid function circuit (SFC) is used as input
to each of the analog multipliers (Mult). Each pair of features has a
common analog multiplier that is fed with the two output currents
of the corresponding SFC. Based on Fig. 1, the output of the first
SFC enters the 𝐼𝑏 terminal, and the output of the second enters the
𝐼𝑚𝑢𝑙 terminal. The primary use of the analog multiplier is to correlate
the outputs of individual features [71]. The first step was to find the
correlation coefficient and covariance for each pair of features. If both
features have high output, then their combined output (multiplier’s
output) will be high. Conversely, it will be low if both have low output.
In the case where one has low output and the other has high output,
then the multiplier’s output will be low. This characteristic is exploited
by this architecture to reduce the current introduced into the cascode
current mirrors (CMs). Additionally, this block has the capability to
adjust the weight if the desired value has not been achieved by the
previous layer.

The summation on the classes’ output node is carried out through
the cascode CMs. These are utilized in order to minimize potential
distortions in the calculations that might arise from undesirable effects
on the output currents of the multiplier. The output currents from
each feature are collected together at a shared node and subsequently
directed into a PMOS diode. This process transforms the cumulative
output current of class 𝑘 = 1, 2 into the corresponding output volt-
age, 𝑉𝑜𝑢𝑡𝑘 . The classifier’s prediction is determined by an operational
amplifier operating in an open-loop configuration, which compares
the output voltages of the two classes. The resulting output voltage
saturates either to 𝑉𝐷𝐷 or 𝑉𝑆𝑆 , depending on the victorious class. All
building blocks operate in the sub-threshold region with power-supply
rails 𝑉𝐷𝐷 = −𝑉𝑆𝑆 = 0.3 V.

4.2. Main building blocks

The first circuit to be analyzed is the MDC which approximates
the euclidean distance [18]. The circuit implementation of the MDC
is depicted in Fig. 2 and consists of both NMOS and PMOS CMs as well
as the translinear loop. Based on techniques from both sub-threshold
region and the use of the translinear loop, it emerges that the output
current is given by: 𝐼𝑜𝑢𝑡 = ‖𝐼𝑖𝑛 − 𝐼𝑟‖. As it is a current-mode implemen-
tation, both current subtraction and the final output can be achieved
simply by connecting wires. To ensure robust mirroring even for very
small currents, cascode CMs were employed. By using cascode CMs
the channel-length modulation effect (Early effect) is reduced and the
quality of the mirroring is increased. Also, the cascode configuration
provides some level of immunity to noise and interference, improving
the signal-to-noise ratio and overall performance of the circuit. Addi-
tionally, the selection of the range for the values of the currents 𝐼𝑟 and
𝐼𝑖𝑛 was made with the aim of minimizing power consumption while
optimizing circuit operation. The transistor dimensions are equal to
(𝑊 ∕𝐿) = 400 nm

1600 nm (for NMOS) and (𝑊 ∕𝐿) = 1600 nm
1600 nm (for PMOS). The

behavior of the output current 𝐼𝑜𝑢𝑡 as a function of the input current
𝐼𝑖𝑛 for different values of the current 𝐼𝑟 is illustrated in Fig. 3.

In this subsection, we present an alternative approach to con-
structing a SFC [72]. The introduced SFC comprises three primary
4 
Fig. 2. The implementation of the Manhattan distance with analog integrated circuits.
It is a low-power implementation which operate in sub-threshold region. The lowest
output value is achieved when input current 𝐼𝑖𝑛 is equal to 𝐼𝑟.

sub-modules: an NMOS cascode current mirror, a PMOS current mir-
ror, and an NMOS Winner-takes-all (WTA) circuit [73]. In a standard
SFC, the differential pair is commonly utilized. However, in this im-
plementation, it is replaced by the NMOS WTA to achieve a more
pronounced Sigmoid function curve. The WTA circuit is preferred due
to its superior linearity when compared to a conventional differential
pair. The depicted illustration of the proposed SFC can be found in
Fig. 4. The NMOS WTA is constructed using four NMOS transistors with
(𝑊 ∕𝐿) = 400 nm

1600 nm .
Initially, the WTA operates in the sub-threshold region for inputs

𝐼𝑖𝑛 and 𝐼𝑟 and bias current 𝐼𝑏𝑖𝑎𝑠 [73]. In an ideal operating scenario,
if 𝐼𝑖𝑛 > 𝐼𝑟, then the outputs would be 𝐼𝑜𝑛2 = 𝐼𝑏𝑖𝑎𝑠 and 𝐼𝑜𝑛1 = 0, and
conversely, 𝐼𝑜𝑛1 = 𝐼𝑏𝑖𝑎𝑠 and 𝐼𝑜𝑛2 = 0 for 𝐼𝑖𝑛 < 𝐼𝑟. However, due to
the circuit operating in the linear region for close values of 𝐼𝑖𝑛 and 𝐼𝑟,
their output behaves akin to an exponential function with 𝐼𝑖𝑛 as the
variable. The SFC’s transistor dimensions are equal to (𝑊 ∕𝐿) = 400 nm

1600 nm
(for NMOS) and (𝑊 ∕𝐿) = 1600 nm

1600 nm (for PMOS).
Manipulating two circuit parameters, 𝐼𝑏𝑖𝑎𝑠 and 𝐼𝑟, achieves the

electronic adjustment of the Sigmoid function’s height and center. An
additional parameter, 𝑉𝑐 , linked with bulk-controlled transistors, may
be introduced to finely adjust the Sigmoid function’s width, though it
does not affect classification accuracy for this circuit. These parameters
are determined during the classifier’s training process, which is exe-
cuted through software-based implementation. Fig. 5 demonstrates how
the bias current 𝐼𝑏𝑖𝑎𝑠 controls the resulting Sigmoid output current’s
height while maintaining a constant 𝐼𝑟 = 5 nA. On the other hand,
Fig. 6 depicts how the mean value of the derived Sigmoid function
is altered by the current 𝐼𝑟, with 𝐼𝑏𝑖𝑎𝑠 = 5 nA held constant. An
interesting point is that the output curve of the sigmoid function
circuit is a little too steep. This provides an advantage during training
procedure because it approximates a step response behavior which
provided higher classification accuracy for the specific tasks.

For precise linear scaling, an analog multiplier circuit [72,74],
depicted in Fig. 7, is utilized. This multiplier functions based on the
translinear principle [72], which dictates that the product of clock-
wise translinear elements’ currents within a translinear loop equals
the product of counterclockwise translinear elements’ currents derived
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Fig. 3. The output current of the MDC as function of the input current 𝐼𝑖𝑛 and parameterized on 𝐼𝑟.
Fig. 4. The high level schematic of the proposed SFC. It consists of a NMOS cascode
CM, a NMOS WTA circuit and a PMOS CM. The 𝐼𝑟 parameter current tunes the mean
value and 𝐼𝑏𝑖𝑎𝑠 alters the height of the Sigmoid function curve.

Fig. 5. The output current of the SFC as a function of 𝐼𝑖𝑛 and parameterized on 𝐼𝑏𝑖𝑎𝑠,
for 𝐼𝑟 = 5 nA.
5 
Fig. 6. The output current of the SFC as a function of 𝐼𝑖𝑛 and parameterized on 𝐼𝑟,
for 𝐼𝑏𝑖𝑎𝑠 = 5 nA.

within the same loop. Essentially, in the sub-threshold region of MOS
operation, the translinear principle converts the sum of gate-to-source
voltages around the loop into a current product. This conversion is
facilitated by the exponential characteristics of MOS operation in the
sub-threshold region [75], relative to its gate-to-source voltage, which
arises from the application of Kirchhoff’s voltage law within the loop.

Given that all four transistors (𝑀𝑛1, 𝑀𝑛2, 𝑀𝑛3, and 𝑀𝑛4) are op-
erating within the sub-threshold region and following the translinear
principle, the output current of the MP can be represented as:

𝐼𝑜𝑢𝑡 =
𝐼𝑏𝐼𝑏𝑖𝑎𝑠
𝐼𝑚𝑢𝑙

. (5)

In this scenario, 𝐼𝑏 and 𝐼𝑏𝑖𝑎𝑠 serve as inputs to the analog multiplier
circuit, while 𝐼𝑚𝑢𝑙 acts as a constant normalizing current. The presence
of transistor 𝑀𝑛5 is essential for appropriately biasing the translinear
loop. Comprehensive dimensions of the transistors within the multiplier
circuit are equal to (𝑊 ∕𝐿) = 2800 nm

2400 nm (for NMOS) and (𝑊 ∕𝐿) = 1800 nm
3200 nm

(for PMOS).
According to Eq. (5), the output current 𝐼𝑜𝑢𝑡 exhibits a linear in-

crease with the rise in currents 𝐼𝑏 and 𝐼𝑏𝑖𝑎𝑠, and uniformly decreases
with the increment of current 𝐼𝑚𝑢𝑙. This behavior is further validated
by the simulation outcomes. Fig. 8 illustrates the output current of the
analog multiplier circuit as a function of 𝐼𝑏𝑖𝑎𝑠, parameterized by 𝐼𝑚𝑢𝑙,
with 𝐼𝑏 = 5 nA. Fig. 9 demonstrates the output current of the multiplier
circuit as a function of 𝐼𝑏𝑖𝑎𝑠, with 𝐼𝑚𝑢𝑙 = 10 nA, and parameterized by
𝐼𝑏. Similarly, Fig. 10 presents the output current of the MP circuit as a
function of 𝐼 , with 𝐼 = 5 nA, and parameterized by 𝐼 .
𝑚𝑢𝑙 𝑏𝑖𝑎𝑠 𝑏
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Fig. 7. The implementation of the analog multiplier. It consists of a translinear-loop.

Fig. 8. The output current of the analog multiplier as a function of 𝐼𝑏𝑖𝑎𝑠 and
parameterized on 𝐼𝑚𝑢𝑙 , for 𝐼𝑏 = 5 nA.

Apart from parametric sweeps, a transient analysis is conducted
to further assess the analog multiplier’s performance. Figs. 11 and
12 depict the transient inputs and output of the analog multiplier
respectively. In Fig. 12 the ideal value of 𝐼𝑜𝑢𝑡 - calculated as shown
in Eq. (5) - is also plotted. It can be observed that 𝐼𝑜𝑢𝑡 follows its
theoretical value with satisfactory accuracy, with the error between
them not exceeding a few nA at most.

An intriguing observation is that when 𝐼𝑏 is set to a high value
(greater than 2 nA) and 𝐼𝑏𝑖𝑎𝑠 is set to a low value (e.g., 500 pA), the
output current equals the low value. To elaborate, if 𝐼𝑏 = 5 nA (high)
and 𝐼𝑏𝑖𝑎𝑠 = 500 pA (low), the circuit approximates an ‘‘AND Logic Gate’’,
with the output equaling 500 pA (low), rather than 2.5 nA (midpoint).

The folded-cascode operational amplifier was used as the output
stage of the classifier. This amplifier is utilized as a voltage comparator,
providing either 𝑉𝐷𝐷 or 𝑉𝑆𝑆 output depending on the voltages received
at the input. Specifically, if the voltage at the positive input is higher
than the negative input, the output will have a voltage close to 𝑉𝐷𝐷;
otherwise, it will have a voltage close to 𝑉𝑆𝑆 . The topology of the
amplifier is illustrated in Fig. 13. The voltages 𝑉𝑏𝑖𝑎𝑠,𝑖, where 𝑖 = 1, 2, 3, 4,
originate from an additional biasing stage with diode-connected tran-
sistors, similar to the implementation in [76]. This topology is chosen
because it provides a relatively high gain of approximately 50 dB, its bi-
asing is straightforward, and compensation can be easily achieved using
a capacitor at the output. The transistors’ dimensions are summarized
in Table 1.
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Fig. 9. The output current of the analog multiplier as a function of 𝐼𝑏𝑖𝑎𝑠 and
parameterized on 𝐼𝑏, for 𝐼𝑚𝑢𝑙 = 8 nA.

Fig. 10. The output current of the analog multiplier as a function of 𝐼𝑚𝑢𝑙 and
parameterized on 𝐼𝑏, for 𝐼𝑏𝑖𝑎𝑠 = 20 nA.

Table 1
Folded Cascode operational amplifier sizing (Fig. 13).

NMOS W/L (μm/μm) PMOS W/L (μm/μm)

𝑀𝑛1, 𝑀𝑛3 1.8∕2.0 𝑀𝑝1, 𝑀𝑝2 3.2∕3.0
𝑀𝑛2, 𝑀𝑛3 2.4∕2.0 𝑀𝑝4, 𝑀𝑝6 4.8∕3.6
𝑀𝑛2, 𝑀𝑛3 2.4∕2.0 𝑀𝑝3, 𝑀𝑝5, 𝑀𝑝7 3.2∕3.6

Another interesting point is the comparison between this work and
our previous one [18]. Firstly, [18] involves a set of centroids repre-
senting different classes. The network computes the Manhattan distance
between input data points and these centroids. Also, it uses centroids
and Manhattan distance for straightforward classification. It involves
finding the optimal positions of the centroids, often using techniques
like k-means clustering with the Manhattan distance metric. Moreover,
it is simpler, since it has more interpretable models. It is better for
simple classification tasks with clear centroid-based separation.

In contrast, this work introduces an alternative ANN architecture
but incorporates Manhattan distance in its computations. More specifi-
cally, it is similar to a traditional ANN, but incorporates the Manhattan
distance within its computation, either as part of the hidden layers
or in the distance computation. Also, the Manhattan distance can be
used in various ways, such as in hidden layer transformations or as a
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Fig. 11. The input currents applied to the analog multiplier for a transient test.
Fig. 12. A comparison between the simulated and ideal transient response of the analog multiplier circuit.
Fig. 13. The folded cascode operational amplifier realizing the voltage comparator of
the analog ANN.

criterion in the loss function. Regarding training, it involves backprop-
agation and gradient descent with Manhattan distance influencing the
network’s learning process. It is capable of learning complex, non-linear
relationships. Last but not least, it is suitable for more complex tasks
where the properties of Manhattan distance can be leveraged within a
flexible, deep learning framework.

4.3. Design procedure

In this section, we will delve into the process of determining the
specifications and design parameters for the proposed architecture.
7 
Beginning with the power supply, the selection was guided by con-
siderations of minimizing power consumption and ensuring proper
circuit functionality within the sub-threshold region across Process-
Voltage–Temperature (PVT) variations [75,77–79]. In particular, for
applications demanding low power, the sub-threshold region is the
preferred operating range. Here, devices should be biased with 𝑉𝐺𝑆
voltages nearly equivalent to 𝑉𝑡ℎ (which rises as temperature decreases
due to increased carrier mobility), and 𝑉𝐷𝑆 ≥ 4𝑉𝑇 , where 𝑉𝑇 = 𝑘𝑇 ∕𝑞
(temperature-dependent) [75,77–79]. Except from the diode connected
transistor which are properly biased when applying the proper dimen-
sions. The implemented blocks are designed with branches comprising
a maximum of 3 or 4 transistors (except from the diode connected
cases). Considering a maximum temperature of 125◦ Celsius, the 𝑉𝑇
value amounts to 34.322 mV. Consequently, under the worst-case sce-
nario for transistor operation, a difference of 𝑉𝐷𝐷−𝑉𝑆𝑆 = 549.152 mV is
necessitated. To provide a margin for mitigating over Voltage variation
(e.g., 𝑉𝐷𝐷−𝑉𝑆𝑆 = 0.5 V), we opt for a supply equivalent to 𝑉𝐷𝐷−𝑉𝑆𝑆 =
0.6 V. The decision to employ the same supply for all blocks was driven
by the need for one specific power supply.

The process of selecting dimensions for each block is intricate and
involves multiple parameters. Primarily, as the width (W) and length
(L) of the devices are augmented, there is a corresponding increase
in the overall occupied area. The aim, as per previous implementa-
tions and literature Refs. [80], is to design the architecture within a
combined area smaller than 0.3 mm2. Both literature and simulations,
particularly in the sub-threshold region, advocate for opting for a small
W value while maximizing L. Augmenting W (thus increasing conduct-
ing channels) results in heightened leakage current, whereas enlarging
L tends to mitigate this effect by reducing drain-induced barrier low-
ering (DIBL) phenomena. Moreover, bias currents were deliberately
chosen to significantly surpass corresponding leakage currents [75,77–
79]. They also exert an influence on the current flow across each
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Fig. 14. The noise level for the ANN implementation.

node. Additionally, the small 𝑉𝐺𝑆 voltage at low current levels, coupled
with the relatively diminutive 𝑉𝑡ℎ in current technology, renders sub-
threshold biasing feasible with a large L and comparatively small W.
The value of 𝑉𝑡ℎ escalates with both increasing L and decreasing W
(thus diminishing gate-channel capacitance). Furthermore, flicker noise
diminishes with enlarging L. The selection of a specific value also
hinges on the desired noise level, which, based on transient simulations,
seems minimally impacted by data inaccuracies [75,77–79]. More
specifically, the RMS current for the signal (square pulse) is equal to
𝐼𝑠𝑖𝑔𝑅𝑀𝑆 = 5.5 nA and the maximum RMS current for the noise is equal
to 𝐼𝑛𝑜𝑖𝑠𝑒𝑅𝑀𝑆 = 325 fA (based on simulation results). The simulation
results regarding the noise level for the ANN implementation (in the
output node) is summarized in Fig. 14. Additionally, as W and L values
increase, parasitic capacitances also increase, consequently reducing
the desired bandwidth (BW) of the classifier. The effect of the choice of
dimensions on the input–output transistors, which create the dominant
pole through the parasitic capacitors, is shown in Fig. 15, both with
the alteration of W (values) and with the L (values). This results in a
reduction in its processing speed, with our target being above a few
KHz based on literature [81]. Furthermore, the low supply voltage of
the system contributes to a diminished BW. Also, in order to reduce
the mismatch between transistors, as described by Pelgrom model [82],
we should increase W or L (sub-threshold region effect). Based on
the previous steps and mismatch effect, the selection of dimensions
was aimed at achieving a minimal variation in current mirroring,
specifically targeting less than 5% deviation across PVT variations.

The impact of mismatch for varying values of W and L is illustrated
in Fig. 16. Larger device dimensions (such as in a differential pair
or current mirror) result in smaller variations between the input and
output currents, though this increases the total area. This observation
is also supported by the related mathematical model. To achieve a
mismatch below 5%, the product 𝑊 ⋅ 𝐿 must exceed 1.92 μm2 (for
example, 𝑊 = 0.8 μm and 𝐿 = 2.4 μm).

Lastly, it is interesting to mention the design choices made in
implementing the output stage of each class in Fig. 1. The argument
can be made that for a class with many Neuron Cells a large current
can accumulate at the MOS diode depicted in Fig. 1, causing the voltage
drop across it to become abnormally high. This could impose an upper
limit on the number of synapses that can be connected to a neuron since
it can cause problems like degrading the performance of the Neuron
Cells’ output stage. An abnormally high voltage drop across the MOS
diode can also cause the output voltage to saturate to the power rails.

To account for this problem, we drive the output of each Neuron
Cell into a NMOS Current Mirror (CM) to buffer the output current of
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Fig. 15. The effect of the choice of dimensions on the input–output transistors, which
create the dominant pole through the parasitic capacitors. In this graph we alter both
W and L.

Fig. 16. The effect of mismatch for different values of W and L. For lower sizes, the
output current has a large variance in comparison with the input current.

the Cell’s analog multiplier. The CM’s devices are made wider than typi-
cally used in the rest of the design’s current mirrors to accommodate for
low values of the voltage at their output node. We further compensate
for this by using a wide device for the MOS diode to limit the effect a
very large drain current can have on its voltage drop, thus increasing
the amount of current that can flow from it without causing problems.

By testing the topology with an increasingly high number of features
we found that the upper limit where the output stage performed well
was reached at a few hundreds of Neuron Cells, which is where the
PMOS diode had transitioned from the sub-threshold to the saturation
region of operation due to the accumulation of current flowing through
it. Since each Neuron Cell is associated with two features it is clear
that the architecture can accommodate hundreds of features before
degradation of performance is observed.

5. Training and tuning capabilities

The analog integrated ANN described above relies on integrating
the main components to function as a distance measure for prototypes
within each class (as explained in the previous Section). This config-
uration permits the electronically adjustable parameters, denoted as
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𝐼𝑟 for each feature, to be utilized in fabricating a post-layout clas-
sification chip. Furthermore, the associated currents can be adjusted
across all components to enhance tolerance at the expense of power
consumption (especially for more intricate tasks). This flexibility fa-
cilitates easy adaptation to meet the specific demands of the intended
application. Moreover, the system’s adjustability can effectively tackle
a wide range of classification challenges, regardless of factors such as
input dimensions (𝑁𝑑).

To initiate the procedure, we developed a software-based approach
to implement the ANN, aiming to collect crucial parameters for the
circuit. For consistency, all datasets utilized to validate the classifier
were normalized to align with the operational range of the imple-
mented EDC, specifically within the interval of [3, 9] nA, as elaborated
in the preceding section. Additionally, the range of 𝐼𝑟 for SFC was
defined as [4, 12] nA. This introduces an additional degree of free-
dom in the implementation, as the parameter current of the SFC, 𝐼𝑟,
can act as a multiplicative factor affecting weight changes. Conse-
quently, a mapping between the values of 𝐼𝑟 and the corresponding
weights was established. Subsequently, the software-based classifier un-
derwent a customized training process utilizing a specific methodology.
This approach facilitated the extraction of input dimensions for each
class, directly correlating with the associated current parameters of the
hardware counterpart.

In obtaining the values of 𝐼𝑚𝑢𝑙, a deliberate decision was made due
to the lack of a direct method within the ANN to determine them during
the training process. It was opted to assign it an arbitrary value that
remained consistent across both classes. The choice of 𝐼𝑚𝑢𝑙 is tied to
a balance between accuracy and power consumption. This intentional
choice aims to highlight any significant decrease in accuracy in the
hardware implementation attributable to the extraction of software-
based 𝐼𝑟 values for both blocks, simplifying the development process
and reducing unnecessary complexity. This step is performed once for
each unique application, and the resulting parameters are subsequently
exported and stored in analog memory [83].

Training an ANN encompasses various stages [45]. Below, a top-
level examination of the process is provided step by step. (1) Initially,
the collection of a dataset is required, consisting of inputs (features) and
their corresponding labels (correct answers) for each example. (2) Next,
the dataset is divided into two subsets: a training set and a validation
set. The training set is used to train the model, while the validation
set is used to evaluate its performance on independent data. (3) Then,
the appropriate neural network architecture needs to be selected, which
includes the number of layers and neurons in each layer. (4) Training of
the neural network using the training set. During training, the network
weights are adjusted to minimize the deviation between predictions
and actual values. (5) Evaluation of the trained model’s performance
on the validation set to assess its ability to generalize to new data.
(6) Adjustment of the model’s hyperparameters (such as learning rate
and number of training epochs) to optimize performance. (7) Iteration
of the previous steps if necessary to achieve the desired performance.
Pruning techniques are applied to reduce its size and complexity. This
can help prevent overfitting. Finally, due to the abundance of data, a
70−30% training-test split was utilized.

The previous steps are different in comparison with [18] in which
we have the following procedure. (1) Normalize and scale the digital
dataset to fit within the circuit’s operational current range of [4,9] nA.
This ensures compatibility with the analog circuit’s limits and prevents
operational issues. (2) Use the preprocessed datasets to train a software-
based centroid classifier. This classifier serves as a reference for the
hardware implementation and computes the necessary parameters,
such as the centroid vectors for each class. (3) Once the software
classifier is trained, extract the centroids and the processed dataset.
Translate these centroids into the current settings for the hardware
implementation, setting the centroids as current parameters 𝐼𝑟 and
he processed data as current inputs 𝐼𝑖𝑛 in the analog circuit. (4)

est the analog classifier using a subset of the dataset to verify its
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accuracy and alignment with the software-based model. Analyze any
discrepancies identified during testing and make necessary adjustments
to the parameter mappings to enhance the classifier’s performance. (5)
Optimize the analog centroid classifier to achieve high classification
accuracy while maintaining low power consumption.

In this study, each feature operates independently of the others,
except for those that are correlated. Consequently, if a generalized
implementation is supplied, it can readily adjust the number of input
dimensions. For an implementation featuring 𝑁𝑑 features, it becomes
feasible to deactivate 𝑁𝑑 −1 input features either by biasing each block
with zero currents or by assigning 𝐼𝑖𝑛 values significantly different from
𝐼𝑟 (for instance, setting 𝐼𝑖𝑛 = 3 nA and 𝐼𝑟 = 9 nA). Furthermore,
deactivating the entire classifier is straightforward by employing the
aforementioned technique for all classes and input dimensions.

6. Application examples and simulation results

In this section, we will present the applications in which the
classifier was tested along with the simulation results of both the
software-based implementation and the proposed hardware-friendly
ANN. Our previous implementation [18] was tested on a dataset related
to Chronic Kidney disease. Similarly, the proposed architecture will be
tested on biomedical datasets, aiming to create a generalized range of
applications that will contribute to medical diagnosis and personalized
medicine (understanding the needs of each patient for a variety of
diseases based on their characteristics). The first dataset, Echocardio-
gram dataset, originates from a medical research group based in Long
Island, New York, and readers can access it through the University
of California, Irvine (UCI), Machine Learning Repository [84]. The
second dataset, Primary Tumor dataset, contains information related
to patients with primary tumors, focusing primarily on the colon and
rectal cancer domain. Readers can access it through the University of
California, Irvine (UCI), Machine Learning Repository [85].

Regarding the first dataset, the Echocardiogram dataset comprises
132 instances with 12 attributes, encompassing both numerical and
categorical data [84]. More specifically, this dataset consists of two
classes and 𝑁𝑑 = 9 features. These attributes include clinical mea-
surements such as age, sex, and echocardiographic parameters like
fractional shortening and E-point septal separation. Additionally, the
dataset contains information on left ventricular dimensions, wall mo-
tion scores, and the number of major vessels affected by narrowing
or blockage. One crucial attribute, ‘‘Alive-at −1’’, serves as the target
variable, indicating whether patients survived for at least one year fol-
lowing their echocardiogram examination. With its inclusion of diverse
patient characteristics and cardiac measurements, this dataset serves as
a valuable resource for developing predictive models to assess patient
survival outcomes based on echocardiographic findings and clinical
parameters.

The second dataset, called Primary Tumor dataset, offers valuable
insights into the domain of colon and rectal cancer [85]. Originating
from the Department of Surgery at the University of Ankara and the
Department of Information and Computer Science at Ege University in
Turkey. This dataset comprises attributes (17 features) detailing diverse
characteristics of primary tumors. These attributes encompass clinical
and pathological features such as tumor size, location, histological type,
and lymph node involvement. Each instance in the dataset represents
a patient diagnosed with a primary tumor, providing clinicians and
researchers with a comprehensive view of tumor-related information.
Commonly employed for classification tasks, the dataset serves as a
foundational resource for developing predictive models to assess tumor
malignancy based on its distinctive attributes. More specifically, this
dataset consists of two classes and 𝑁𝑑 = 17 features. It remains an
invaluable asset for advancing research in oncology and enhancing
understanding of primary tumor behavior and prognosis.

The concept here is that some of the data (e.g. in the echocardio-

gram dataset) are long-term measurements or medical exam results
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Fig. 17. The implemented layout of the proposed ANN classifier. It consists of extra dummy transistors.
Table 2
Classification results on both datasets over 100 iterations. The first two lines are
related to the first dataset and the last two lines are related to the second dataset
respectively.

Method Best (%) Worst (%) Mean (%) Std. (%)

Software 100.0 97.2 98.7 0.93
Proposed 99.7 96.8 98.4 1.01
Software 97.7 93.2 95.4 1.13
Proposed 97.2 92.1 94.9 1.51

which can be considered as short-time constants. At the same time,
real-time (critical) data like ECG can be provided on-the-fly by a smart
watch or similar wearable device. As a result, this low-power analog
classifier can be used as a basic candidate for low-power wearable
biomedical applications. This is critical as it frees the system from the
need for additional power-hungry circuits such as converters (no need
for ADC and DAC).

The two datasets do not contain the same number of features;
therefore, the implemented layout will consist of 2 classes and 17
features with the aim of being able to incorporate both classification
tasks. For the implementation of the first dataset, which contains 9
features, we will use the techniques mentioned in the previous section
to disable the extra blocks. The design, simulation, and layout pro-
cedures were carried out using the Cadence IC suite within a TSMC
90 nm CMOS process. The implementation of the layout, as depicted
in Fig. 17, utilizes the common-centroid technique. Moreover, extra
dummy transistors have been integrated to minimize discrepancies and
cater to manufacturing concerns. The total area measures 0.127 mm2,
encompassing the classifier and the biasing circuits within the layout.
We should note that the software’s simulation results are compared
with the post-layout simulation result.

To minimize the potential occurrence of over-fitting, the ANN clas-
sifier underwent the training–testing procedure 100 times, with the
summarized results presented in Table 2 and Figs. 18 and 19 for
both datasets. Specifically, to address random effects introduced by
the training algorithm, 100 separate software-based training iterations
were conducted to extract the requisite parameters of the ANN. As
demonstrated, the proposed implementation achieves nearly perfect
accuracy results on the best train–test split for both datasets. Moreover,
the comparison between software and hardware validates the precision
of the topology, with a sub-1% decrease observed between mean soft-
ware and hardware performance for both datasets. It is worth noting a
slight decrease in hardware accuracy compared to software, primarily
due to the circuits generating an approximation of the requested func-
tions rather than an ideal representation. However, the training of the
parameters lays the groundwork for their ideal model.

In addition to the 100-iteration test, the designed analog circuits
need to undergo testing for their sensitivity to PVT variations. There-
fore, a Monte-Carlo analysis, considering process and mismatch vari-
ations, was conducted with N = 500 distinct points (equivalent to
10 
Fig. 18. Classification results of the introduced architecture and its software
counterpart on the first dataset across 20 iterations.

Fig. 19. Classification results of the introduced architecture and its software
counterpart on the second dataset across 20 iterations.

6𝜎). The comprehensive results are outlined in Figs. 20 and 21, with
their statistical attributes presented in Table 3 for both datasets. The
proposed architecture demonstrates robustness, maintaining a worst-
case accuracy above 91.6% for both datasets. Simultaneously, the
calculated variance in both cases remains below the 1% threshold,
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Table 3
Monte Carlo analysis simulation results for both datasets.

Method Best (%) Worst (%) Mean (%) Std. (%)

First dataset 99.5 95.3 97.81 0.95
Second dataset 97.2 91.6 94.03 1.32

Fig. 20. Post-layout Monte-Carlo simulation results of the proposed architecture on
he first dataset.

Fig. 21. Post-layout Monte-Carlo simulation results of the proposed architecture on
he second dataset.

hereby confirming the acceptable sensitivity characteristics of the
roposed classifiers.

Except from the Monte-Carlo analysis, the proposed classifiers is
ested over PVT variations. The selected corners encompass TT, SS,
F, SF, FS (where T stands for Typical, S for Slow, and F for Fast).
dditionally, the power supply rails fluctuate within the range of 𝑉𝐷𝐷 =

−𝑉𝑆𝑆 = 0.25 V to 𝑉𝐷𝐷 = −𝑉𝑆𝑆 = 0.35 V. Regarding temperature,
the assessed spectrum ranges from −25 ◦C to 125 ◦C. The proposed
rchitecture exhibits resilience across corners, maintaining a minimum
lassification accuracy of 90.8%, under the worst-case scenario for the
ifficult dataset among the two. The most challenging corner scenario
merges with SS, −25 ◦C, 𝑉𝐷𝐷 = −𝑉𝑆𝑆 = 0.25 V, coupled with reduced
oftware-based accuracy (worst case). Also, a combination between
he worst case corner and Monte Carlo analysis (both process and
ismatch) is provided in order to test the sensitivity behavior of the
11 
Fig. 22. Post-layout Monte-Carlo simulation results of the proposed architecture on
the second dataset for the worst case corner.

classifier (see Fig. 22). This combination provides PVT simulation mod-
els related to systematic variations and Monte Carlo simulation models
regarding random variations. The proposed architecture demonstrates
robustness, maintaining a worst-case accuracy above 84.6% for both
datasets. Simultaneously, the calculated variance in both cases remains
below the 1% threshold, thereby confirming the acceptable sensitivity
characteristics of the proposed classifiers.

Based on the corner analysis and Monte-Carlo simulation results,
we can model the related effects. These variations will be added to the
modeling errors. After a carefully examination, the more correct way of
doing the training is ‘‘chip in the loop’’ training, where the weights will
be adjusted individually for each chip. This training procedure needs
further investigation.

7. Comparison study and discussion

The prevailing literature indicates that analog classifiers are com-
monly crafted as specialized engines for specific applications. This
specialization poses a challenge when endeavoring to fairly compare
different implementations. Thus, there exists an opportunity to cus-
tomize the design of these classifiers to suit the same application,
enabling a thorough evaluation of performance across various machine
learning models and methodologies. Specifically, Table 4 provides a
performance overview of this research alongside analog integrated
classifiers, all tailored for the primary tumor classification task. All the
outlined classifiers are implemented using TSMC’s 90 nm CMOS process
technology, with power supply rails chosen based on the operational
region and a balance between heightened accuracy and reduced power
consumption.

All classifiers underwent training utilizing essential software, rely-
ing on the mathematical models delineated in each implementation.
Subsequently, they were all implemented and simulated using the
TSMC 90 nm CMOS process. For comparison purpose, all underwent
schematic-level verification, with the exception of our work, which
also underwent layout-level verification. Necessary enhancements were
then incorporated to optimize both classification accuracy and speed,
with a primary focus on minimizing power consumption. We adhered
to the identical design process as elucidated in the design procedure
subsection. In instances where the architecture operates in saturation,
we applied specific techniques tailored to that operational region. The
aforementioned process aimed to ensure equitable comparison, given

the disparate technologies and distinct classification tasks utilized in
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Table 4
Analog classifiers’ comparison on the primary tumor dataset.

Classifier Min
accuracy (%)

Mean
accuracy (%)

Max
accuracy (%)

Power
consumption (μW)

Processing speed
(

classif ications
s

)

Energy (pJ) per
classification

Architecture
complexity

This work ANN 92.1 94.9 97.2 0.976 500𝐾 1.95 Medium
[18] Manhattan 89.2 91.3 94.1 0.873 220𝐾 3.97 Medium
[19] Fuzzy 91.4 93.8 96.5 1.055 4.55𝐾 231.87 Medium
[20] GMM 89.3 92.3 95.1 1.93 120𝐾 16.08 Medium
[21] RBF 86.4 90.1 92.1 20.34 170𝐾 119.65 Medium
[22] RBF-NN 92.0 94.6 97.1 1.43W 270𝐾 5.29 Medium
[26] Bayes 87.3 91.5 94.2 0.921 120𝐾 7.68 Low
[27] SVM 90.7 92.7 94.5 930.2 870𝐾 1069 High
[28] SVM 91.1 93.7 96.3 58.93 140𝐾 420.93 Medium
[29] K-means 94.2 96.2 98.6 295.45 5𝑀 59.09 High
[30] SVR 95.1 96.1 97.8 96.9 870𝐾 111.37 High
[31] SVDD 95.5 96.4 96.8 71.34 530𝐾 134.61 High
[32] SOM 95.3 96.8 99.3 812.51 180𝐾 4513 Medium
[33] LSTM 98.1 99.3 100.0 59 000 870𝑀 67.81 Very high
[34] MLP 96.3 97.4 99.1 1035 930𝐾 1112 High
[35] Threshold 91.5 92.4 94.7 0.528 100𝐾 5.28 Low
[36] Centroid 91.3 94.6 97.2 4.05 170𝐾 23.82 Medium
[23] RBF NN 91.7 94.5 96.8 8.74 250𝐾 34.96 Medium
[24] RBF NN 90.8 93.9 94.7 10.43 310𝐾 33.65 Medium
[25] ANN 88.7 91.5 94.6 26.31 3𝑀 8.77 Medium
[37] SNN 96.7 97.4 98.1 31.51 350𝑘 90.03 High
[38] SNN 95.7 96.1 97.4 1.055 410𝑘 3.1 Very high
[39] PM 92.8 94.2 95.7 93.78 180𝑘 521.0 Medium
the implementations. The related comparison includes a variety of
analog classifiers which are referred in Introduction.

The configurations detailed in Table 4 rely on approximations of
mathematical models. Moreover, the implementations cited in [19–
21,26–28,32,35,36] incorporate Gaussian function (Bump) circuits as
their foundational structural elements. In these architectures, the power
supply rails are established at 𝑉𝐷𝐷 = −𝑉𝑆𝑆 = 0.3 V. For the remaining
implementations, power supply rails were selected ranging between
𝑉𝐷𝐷 = −𝑉𝑆𝑆 = 0.6 V and 𝑉𝐷𝐷 = −𝑉𝑆𝑆 = 0.75 V. These archi-
tectures operate within the saturation region, necessitating a higher
supply voltage. The core design principle of these endeavors revolves
around the utilization of multivariate Gaussian functions, leading to the
incorporation of cascaded circuits. At the circuit level, the bias current
of each Bump circuit serves as the output current of the preceding one.
The primary limitation arises from the attenuation of current from the
input to the output of the multivariate Gaussian function circuit. In
contrast to alternative studies, this work distinguishes itself by offering
the capability to control weights for each individual feature, rather
than adjusting the overall probability for the entire class. Additionally,
existing methodologies exhibit a limited operating range for classifiers.
If the chosen parameter during training approaches the power supply
edges, the output current decreases in comparison to a parameter
situated at the center of the power supply. Consequently, the output
current of the Gaussian function circuit may diminish to a level below
the permissible operating current for subsequent circuits.

Regarding architectural complexity, a spectrum of approaches ex-
ists, ranging from low to high complexity, with the specific ML model
and the nature of the approximation influencing the level of com-
plexity. The proposed ANN classifier emerges as the most effective
in achieving high classification accuracy and performance. This su-
periority is attributed to the quality of the proposed architecture’s
approximation compared to other approaches. The proposed implemen-
tations outperform the area efficient classifiers in Table 4 regarding
mean accuracy, except from high complexity algorithms. Notably, this
heightened performance is achieved with the least energy consump-
tion per classification compared to alternative approaches. While the
Threshold classifier achieves the lowest power consumption, it does so
at the expense of accuracy and processing speed due to the simplicity
of its model. Moreover, this work provides a trade-off between power
consumption, energy per classification, and classification accuracy,
emphasizing the flexibility to sacrifice speed for power consumption
in biomedical applications [86].
12 
8. Conclusion

This study introduced a design approach specifically tailored for
analog integrated ANN architecture, with a focus on low-power applica-
tions while achieving high accuracy (exceeding for both datasets 95.3%
and 91.6% respectively). The architecture at a high level incorporates
MDCs, SFCs, analog multipliers, CMs, and operational amplifiers. A
current-mode approach was established, characterized by the circuits
designated for each class. The implementation demonstrated power
efficiency (below 976 nW for the challenging dataset) and operated at a
low supply voltage (0.6V). Moreover, they exhibited resilience to PVT
variations, validated through both Corners and Monte-Carlo simula-
tions. The proposed architecture underwent testing in biomedical clas-
sification tasks, compared with software-based implementations and
other analog IC classifiers. These designs were crafted and simulated
utilizing a 90 nm CMOS process within the Cadence IC Suite.
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